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Abstract. During recent years the nuclear decay modes of discrete prompt proton and α-particle emission
from (super)deformed high-spin states have been discovered in nuclei in the vicinity of 56Ni. The latest
news from experiments performed at EUROBALL and GAMMASPHERE regarding these decays are
presented and discussed.

PACS. 23.50.+z Decay by proton emission – 23.60.+e Alpha decay – 27.40.+z 39 ≤ A ≤ 58 – 27.50.+e
59 ≤ A ≤ 89

This contribution presents recent advances in high-
spin nuclear-structure studies in the vicinity of 56Ni, fo-
cussing on the new and unique decay modes of prompt
proton and α-particle emission. 56Ni is generally accepted
to represent a doubly magic spherical nucleus due to the
shell gap at particle number 28, which separates the 1f7/2

shell from the so-called upper fp shell consisting of the
2p3/2, 1f5/2, and 2p1/2 orbits. Doubly magic nuclei are
important bench marks within the nuclidic chart, because
these nuclei and their closeby neighbours serve as sources
and act as constraints for the shell model parameter sets,
namely single-particle energies and two-body matrix ele-
ments. This implication was one of the original motiva-
tions to study this mass region in terms of high-spin spec-
troscopy. In addition to the comprehensive new results in
the spherical minimum, the nuclear structure near 56Ni
exhibits a plethora of in part unprecedented phenomena,
which are illustrated and summarized in fig. 1.

Next to the spherical shell gap at particle number 28
there is also a gap of similar size for a prolate deformed
(β2 ∼ 0.4) 56Ni nucleus [1], which is based on a 4p-4h ex-
citation —the [303]7/2 Nilsson orbit is emptied and the
[321]1/2 orbit occupied for neutrons and protons. At the
same time the N = 4 high-j low-Ω [440]1/2 intruder or-
bit reaches the Fermi surface. It is readily occupied in
the yrast deformed and superdeformed bands in 58Cu [2]
and 60Zn [3], which may be called the “doubly magic de-
formed” and “doubly magic superdeformed” nuclei of the
mass region, because large and very stable shell gaps ap-
pear for N = Z = 29 at β2 ∼ 0.4 and N = Z = 30 at
β2 = 0.5 in the rotating frame.

a e-mail: dirk.rudolph@kosufy.lu.se

Most interesting is the new decay mode of prompt par-
ticle emission from states in the second minimum of the
potential, which has been established in the mass A ∼ 60
regime. It is schematically illustrated in fig. 2 for the first
case observed in 58Cu [2]. Excited high-spin states in 58Cu
are known in the spherical minimum (left-hand side of
fig. 2) and in the second, deformed minimum of the nu-
clear potential. The latter form a nice rotational band
shown in the middle of fig. 2. While the first excited state
in the rotational band reveals the expected γ-decay back
into the first minimum of 58Cu, the lowest state observed
in the second minimum (Ex = 8915 keV, I = (9+)) emits
a 2.3 MeV proton on a subnanosecond time scale. The fi-
nal state of this prompt proton decay is the neutron g9/2
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Fig. 1. Summary of high-spin nuclear-structure phenomena in
the mass A ∼ 60 region.
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Fig. 2. Scheme of the prompt proton decay in 58Cu [2].

spherical single-particle state in 57Ni [4]. The decay mode
is called “prompt”, because the formation of 58Cu, the
γ-decay in the rotational band, the proton emission, and
the γ-decay in the daughter nucleus 57Ni are observed in
“prompt” coincidence in thin-target in-beam high-spin ex-
periments within a typical time window of less than three
nanoseconds.

The particle decays compete with the conventional γ
decay-out, and they may be viewed as self-regulated two-
dimensional quantum tunneling processes. Due to the de-
cay the remaining nuclear mean-field potential is rear-
ranged dramatically. Quantum-mechanical tunneling is a
widespread phenomenon in the natural sciences. There-
fore, a full understanding of this process may be of impor-
tance far beyond nuclear physics.

Figure 3 describes the progress in terms of spectro-
scopic information regarding the 58Cu case starting from
the first observation of the new decay in 1998 [2] until early
2001. Within this period, the spin and parity of the daugh-
ter state in 57Ni was determined [4], spins and parities
were tentatively assigned to the band members, lifetimes
of the low-lying states in the band were measured [5], and
last but not least the lifetime of the proton-decaying state
could be limited to 0.1 ps < τ < 0.6 ps [6].

The latter two results have been obtained from an ex-
periment performed with EUROBALL coupled to the
4π ∆E-E Si-array ISIS [7] and the Neutron Wall [8].
The use of a backed target allows to apply the Doppler
Shift Attenuation Method (DSAM) to determine lifetimes.
The 830 keV line, which depopulates the 9745 keV state
and feeds the proton-decaying level at 8915 keV, reveals
both a stopped and a shifted component in its lineshape
observed in the backward-angle CLUSTER section of
EUROBALL. Therefore, energy correlations between the
830 keV γ-ray measured in the CLUSTER detectors and
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Fig. 4. Preliminary reaction channel selected proton center-of-
mass (a) and γ-ray (b) spectra from experiment 3. Both spectra
are gated with one of the 830, 1197, 1576, 2342, or 2748 keV
lines in the 58Cu band. Spectrum (a) is also in coincidence with
the 9/2+ → 7/2− 1124 keV transition in 57Ni, while spectrum
(b) is in additional coincidence with the 2.3 MeV proton peak.
Only single proton hits in the four∆E-E Si-strip telescopes are
considered. The γ-ray peaks marked with an asterisk belong to
57Ni, the others are from the band in 58Cu.

the 2.3 MeV proton peak in the most forward detector
elements of ISIS have been studied [6].

In principle, such energy correlations allow for a
DSAM lineshape analysis of the proton line. The Doppler-
shift formula for γ-rays has to be replaced by the cor-
responding formula for particle emission. Unfortunately,
this rather straightforward approach is hampered by the
present experimental set-up, essentially due to a tube-
shaped 12 µm aluminum absorber foil in combination with
the rather large angular coverage of a single telescope in
the ISIS array [7]. It turns out that only protons emitted
at sufficiently large angles can penetrate the absorbers and
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Fig. 5. Part (a) shows the high-spin excitation scheme of 59Cu [13,14]. Part (b) reveals the “proton decay scheme” embedded
in part (a) [15].

cross the detection threshold of the ∆E detectors of the
forward telescopes. In essence, the variation of aluminum
thickness leads to a considerable spread of the detected
proton energy. If the protons are emitted while the recoils
are still moving they have higher energies and thus can be
observed more efficiently since the “visible” opening angle
of the ∆E detectors increases with increasing energy. To
detour this problem the following approach was pursued:
1. Simulations of proton energy spectra for different recoil

velocities taking into account the full geometry of the
absorbers and the most forward ring of ISIS.

2. Simulations of lineshapes for a presumed γ-ray decay
from the 8915 keV level depending on the lifetime of
this level and taking into account the history of the
decay through the band in 58Cu.

3. Comparison of experimentally observed and simulated
fractions of the stopped component of the lineshape
to deduce conservative lower and upper limits of the
lifetime.
A detailed analysis finally yields 0.06 ps < τ < 0.58 ps

for the lifetime of the proton-decaying 8915 keV state in
58Cu, from which an experimental spectroscopic factor of
about 10−3 can be estimated [6]. It awaits the predictions
of detailed and profound future theoretical efforts.

The identification of prompt particle decays [1,2,9,
10] has so far only been possible in GAMMASPHERE
experiments, for which the Ge-array was coupled to the
4π charged-particle detector system MICROBALL [11].
However, high-resolution particle spectroscopy has been
hampered by the relatively large widths of the peaks in
the particle center-of-mass energy spectra. The main con-
tribution to the widths is not the intrinsic resolution of
the CsI elements of MICROBALL, but the size of the
solid angle. For an element in ring 2 of MICROBALL,
for example, a contribution of some 0.5 MeV to the total
width of some 0.7–0.8 MeV may be attributed to the fi-
nite opening angle. To overcome this handicap the 28 most
forward elements of MICROBALL were replaced with an
array of four ∆E-E Si-strip telescopes providing some 800

active pixels instead (see, e.g., ref. [12] for details). This
reduces the geometric opening angle to ∆Θ ∼ 2.5◦ for a
single pixel and the corresponding energy spread down to
∆ECM ∼ 80 keV. It is not necessary to further tighten
the angle coverage, because a beam spot of only 2 mm
almost doubles the effective angle coverage of a pixel. It
will be diffcult to maintain this geometrical contribution
to the resolution below some 150 keV throughout a 7 day
experiment.

The second contribution to the peak width is the tar-
get thickness. A reaction can take place anywhere in the
target, and it is impossible to determine the precise spot of
an individual reaction on an event-by-event basis. There-
fore, the kinematic energies for recoiling nuclei are differ-
ent depending on their travel paths, hence energy loss, in
the target foil. The particles of interest are emitted most
likely after having passed through the remaining path of
the thin target foil. The uncertainty in the value of the re-
coil velocity (the direction can be rather well determined
from the energies and directions of evaporated particles)
does lead to a kinematical contribution to the energy reso-
lution of 200–250 keV for a target thickness of 0.5 mg/cm2.

Finally, the combination of intrinsic resolutions of ∆E
and E strips (∼ 50–60 keV each at 12 MeV) and the en-
ergy spread induced by ∼ 30 mg/cm2 thick Pb absorber
foils, which are necessary to protect the array from direct
heavy-ion hits, yields an intrinsic contribution of about
130 keV. The sum of the three contributions amounts to
an expected resolution of about 300 keV for 2.0–2.5 MeV
protons, which should be compared to 700–800 keV ob-
tained for the earlier experiments. Preliminary results are
shown in fig. 4 for 58Cu. They indicate a measured FWHM
of some 300 keV for the proton peak, and that the sug-
gested weak proton branches into the 11/2− state in 57Ni
(see fig. 3) are not present.

An extensive new level scheme of 59Cu deduced from
GAMMASPHERE data is shown in fig. 5(a) [13,14].
59Cu is an immediate neighbour of 58Cu, and hence a good
candidate to search for prompt proton decays. In fact, two
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Table 1. Prompt particle decays in the mass A ∼ 60 region.
Nuclide Particle Q-value Branching Spin Ref.

(MeV) (%) difference
56Ni proton 2.57 49(14) (7/2+) [1]
58Ni alpha 7.45 3.9(3) (9−) [10]
58Cu proton 2.34 > 97 (9/2)+ [2]
59Cu B4 proton 1.92 11(3) 9/2+ [15]

B4 proton 1.95 2(1) 9/2+ [15]
B5 proton 1.90 9(2) 9/2+ [9,15]
B5 proton 2.02 8(3) 9/2+ [15]
B6 proton 2.48 53(8) 9/2+ [9,15]

decays have already been identified [9]. The present data
set employing the Si-strip detector telescopes, however,
allows for detailed proton-γ coincidence spectroscopy by
gating on both γ-ray and proton lines in Ep-Eγ-Eγ cubes.
As a result, altogether five proton-decaying states have
been established in 59Cu, which have intensities of only
∼ 1% of the strongest γ-ray lines in 59Cu. The details of
the “proton decay scheme” of 59Cu into states of 58Ni are
presented in fig. 5(b) and table 1.

The two proton branches from band “5” are part of the
vast single- and two-step decay-out scheme of the yrast
superdeformed band in 59Cu, which is visible on the left-
hand side of fig. 5(a). Their very specific coupling to the
daughter states in 58Ni (see below), similar to 58Cu, is one
out of several evidences that the decay-out mechanism in
the A ∼ 60 region comprises a structure related coupling
between the states in the second and the first well, in con-
trast to the purely statistical decay-out pattern envisaged
in heavier mass regimes of the nuclidic chart.

Figure 6 sketches another nuclear-structure issue re-
lated to the particle decays, namely the band configura-
tion assignment of band “6” in 59Cu (cf. fig. 5(a)). In 58Cu
the configuration of the proton emitting band is 4141 [2].
In 59Cu, band “5” has a 4241 configuration [13]. The spin
and parity of the proton-decaying states is Iπ = 25/2+.
The decays feed the 8+ state in 58Ni by emitting g9/2 pro-
tons. In addition to seniority v = 4 configurations within
the fp shell, the 6605 keV 8+ state in 58Ni might contain
a seniority v = 2 ν(g9/2)

2

8
component, to which the pro-

ton decay could couple. The proton-decaying level of band
“6” in 59Cu has spin and parity Iπ = 23/2−. The decay
proceeds into the yrast 7− state in 58Ni. Since 58Ni has
two neutrons outside the 56Ni core, a negative-parity state
needs to involve a particle or hole in a positive-parity or-
bit close to the orbits in the fp-shell. The simplest v = 2
configuration for a 7− state is νf5/2 ⊗ νg9/2. The spin
difference between initial and final state for the B2 pro-
ton decay is 9/2 and no change of parity. Thus, the decay
once again involves a g9/2 proton, which together with the
g9/2 neutron in the final-state configuration leads to a 4141

assignment to band “6”.
To summarize, the mass A ∼ 60 region reveals many

exciting aspects of nuclear structure: i) shell model states
near a doubly magic isotope; ii) deformed and superde-
formed rotational bands in the second minimum; iii) is-
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sues related to the self-conjugate nature of some nuclides;
iv) the unprecedented exotic decay of several of the bands
through discrete prompt particle emission in competition
to conventional γ decay-out mechanisms. Their present
experimental status is summarized in table 1. The new
experiments aiming at combined in-beam γ and particle
spectroscopy are clearly challenging the present combina-
tions of the 4π Ge-detector arrays and ancillary detector
systems.

It is anticipated that with a geometrically simpler
experimental set-up a DSAM proton lineshape mea-
surement and analysis is feasible to obtain more precise
lifetime values for particle-decaying states. In addition,
more detailed spectroscopic information such as angular
distributions or correlations shall be investigated to,
e.g., determine the particle angular momentum directly.
Ultimately, the details of an angular distribution mea-
sured relative to the nuclear spin axis may uncover the
wave function of a g9/2 proton inside the deformed mean
field of the 58Cu nucleus, or reveal the time structure
underlying the shape change in the course of the decay
(see ref. [16] and references therein).
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